|
一、深入淺出理解索引結(jié)構(gòu)
實(shí)際上,您可以把索引理解為一種特殊的目錄。微軟的SQL SERVER提供了兩種索引:聚集索引(clustered index,也稱聚類索引、簇集索引)和非聚集索引(nonclustered index,也稱非聚類索引、非簇集索引)。下面,我們舉例來(lái)說(shuō)明一下聚集索引和非聚集索引的區(qū)別:
其實(shí),我們的漢語(yǔ)字典的正文本身就是一個(gè)聚集索引。比如,我們要查安字,就會(huì)很自然地翻開字典的前幾頁(yè),因?yàn)榘驳钠匆羰莂n,而按照拼音排序漢字的字典是以英文字母a開頭并以z結(jié)尾的,那么安字就自然地排在字典的前部。如果您翻完了所有以a開頭的部分仍然找不到這個(gè)字,那么就說(shuō)明您的字典中沒有這個(gè)字;同樣的,如果查張字,那您也會(huì)將您的字典翻到最后部分,因?yàn)閺埖钠匆羰莦hang。也就是說(shuō),字典的正文部分本身就是一個(gè)目錄,您不需要再去查其他目錄來(lái)找到您需要找的內(nèi)容。我們把這種正文內(nèi)容本身就是一種按照一定規(guī)則排列的目錄稱為聚集索引。
如果您認(rèn)識(shí)某個(gè)字,您可以快速地從自動(dòng)中查到這個(gè)字。但您也可能會(huì)遇到您不認(rèn)識(shí)的字,不知道它的發(fā)音,這時(shí)候,您就不能按照剛才的方法找到您要查的字,而需要去根據(jù)偏旁部首查到您要找的字,然后根據(jù)這個(gè)字后的頁(yè)碼直接翻到某頁(yè)來(lái)找到您要找的字。但您結(jié)合部首目錄和檢字表而查到的字的排序并不是真正的正文的排序方法,比如您查張字,我們可以看到在查部首之后的檢字表中張的頁(yè)碼是672頁(yè),檢字表中張的上面是馳字,但頁(yè)碼卻是63頁(yè),張的下面是弩字,頁(yè)面是390頁(yè)。很顯然,這些字并不是真正的分別位于張字的上下方,現(xiàn)在您看到的連續(xù)的馳、張、弩三字實(shí)際上就是他們?cè)诜蔷奂饕械呐判颍亲值湔闹械淖衷诜蔷奂饕械挠成洹N覀兛梢酝ㄟ^(guò)這種方式來(lái)找到您所需要的字,但它需要兩個(gè)過(guò)程,先找到目錄中的結(jié)果,然后再翻到您所需要的頁(yè)碼。我們把這種目錄純粹是目錄,正文純粹是正文的排序方式稱為非聚集索引。
通過(guò)以上例子,我們可以理解到什么是聚集索引和非聚集索引。進(jìn)一步引申一下,我們可以很容易的理解:每個(gè)表只能有一個(gè)聚集索引,因?yàn)槟夸浿荒馨凑找环N方法進(jìn)行排序。
二、何時(shí)使用聚集索引或非聚集索引
下面的表總結(jié)了何時(shí)使用聚集索引或非聚集索引(很重要):
動(dòng)作描述 | 使用聚集索引 | 使用非聚集索引 |
列經(jīng)常被分組排序 | 應(yīng) | 應(yīng) |
返回某范圍內(nèi)的數(shù)據(jù) | 應(yīng) | 不應(yīng) |
一個(gè)或極少不同值 | 不應(yīng) | 不應(yīng) |
小數(shù)目的不同值 | 應(yīng) | 不應(yīng) |
大數(shù)目的不同值 | 不應(yīng) | 應(yīng) |
頻繁更新的列 | 不應(yīng) | 應(yīng) |
外鍵列 | 應(yīng) | 應(yīng) |
主鍵列 | 應(yīng) | 應(yīng) |
頻繁修改索引列 | 不應(yīng) | 應(yīng) |
事實(shí)上,我們可以通過(guò)前面聚集索引和非聚集索引的定義的例子來(lái)理解上表。如:返回某范圍內(nèi)的數(shù)據(jù)一項(xiàng)。比如您的某個(gè)表有一個(gè)時(shí)間列,恰好您把聚合索引建立在了該列,這時(shí)您查詢2004年1月1日至2004年10月1日之間的全部數(shù)據(jù)時(shí),這個(gè)速度就將是很快的,因?yàn)槟倪@本字典正文是按日期進(jìn)行排序的,聚類索引只需要找到要檢索的所有數(shù)據(jù)中的開頭和結(jié)尾數(shù)據(jù)即可;而不像非聚集索引,必須先查到目錄中查到每一項(xiàng)數(shù)據(jù)對(duì)應(yīng)的頁(yè)碼,然后再根據(jù)頁(yè)碼查到具體內(nèi)容。
三、結(jié)合實(shí)際,談索引使用的誤區(qū)
理論的目的是應(yīng)用。雖然我們剛才列出了何時(shí)應(yīng)使用聚集索引或非聚集索引,但在實(shí)踐中以上規(guī)則卻很容易被忽視或不能根據(jù)實(shí)際情況進(jìn)行綜合分析。下面我們將根據(jù)在實(shí)踐中遇到的實(shí)際問(wèn)題來(lái)談一下索引使用的誤區(qū),以便于大家掌握索引建立的方法。
1、主鍵就是聚集索引
這種想法筆者認(rèn)為是極端錯(cuò)誤的,是對(duì)聚集索引的一種浪費(fèi)。雖然SQL SERVER默認(rèn)是在主鍵上建立聚集索引的。
通常,我們會(huì)在每個(gè)表中都建立一個(gè)ID列,以區(qū)分每條數(shù)據(jù),并且這個(gè)ID列是自動(dòng)增大的,步長(zhǎng)一般為1。我們的這個(gè)辦公自動(dòng)化的實(shí)例中的列Gid就是如此。此時(shí),如果我們將這個(gè)列設(shè)為主鍵,SQL SERVER會(huì)將此列默認(rèn)為聚集索引。這樣做有好處,就是可以讓您的數(shù)據(jù)在數(shù)據(jù)庫(kù)中按照ID進(jìn)行物理排序,但筆者認(rèn)為這樣做意義不大。
顯而易見,聚集索引的優(yōu)勢(shì)是很明顯的,而每個(gè)表中只能有一個(gè)聚集索引的規(guī)則,這使得聚集索引變得更加珍貴。
從我們前面談到的聚集索引的定義我們可以看出,使用聚集索引的最大好處就是能夠根據(jù)查詢要求,迅速縮小查詢范圍,避免全表掃描。在實(shí)際應(yīng)用中,因?yàn)镮D號(hào)是自動(dòng)生成的,我們并不知道每條記錄的ID號(hào),所以我們很難在實(shí)踐中用ID號(hào)來(lái)進(jìn)行查詢。這就使讓ID號(hào)這個(gè)主鍵作為聚集索引成為一種資源浪費(fèi)。其次,讓每個(gè)ID號(hào)都不同的字段作為聚集索引也不符合大數(shù)目的不同值情況下不應(yīng)建立聚合索引規(guī)則;當(dāng)然,這種情況只是針對(duì)用戶經(jīng)常修改記錄內(nèi)容,特別是索引項(xiàng)的時(shí)候會(huì)負(fù)作用,但對(duì)于查詢速度并沒有影響。
在辦公自動(dòng)化系統(tǒng)中,無(wú)論是系統(tǒng)首頁(yè)顯示的需要用戶簽收的文件、會(huì)議還是用戶進(jìn)行文件查詢等任何情況下進(jìn)行數(shù)據(jù)查詢都離不開字段的是日期還有用戶本身的用戶名。
通常,辦公自動(dòng)化的首頁(yè)會(huì)顯示每個(gè)用戶尚未簽收的文件或會(huì)議。雖然我們的where語(yǔ)句可以僅僅限制當(dāng)前用戶尚未簽收的情況,但如果您的系統(tǒng)已建立了很長(zhǎng)時(shí)間,并且數(shù)據(jù)量很大,那么,每次每個(gè)用戶打開首頁(yè)的時(shí)候都進(jìn)行一次全表掃描,這樣做意義是不大的,絕大多數(shù)的用戶1個(gè)月前的文件都已經(jīng)瀏覽過(guò)了,這樣做只能徒增數(shù)據(jù)庫(kù)的開銷而已。事實(shí)上,我們完全可以讓用戶打開系統(tǒng)首頁(yè)時(shí),數(shù)據(jù)庫(kù)僅僅查詢這個(gè)用戶近3個(gè)月來(lái)未閱覽的文件,通過(guò)日期這個(gè)字段來(lái)限制表掃描,提高查詢速度。如果您的辦公自動(dòng)化系統(tǒng)已經(jīng)建立的2年,那么您的首頁(yè)顯示速度理論上將是原來(lái)速度8倍,甚至更快。
在這里之所以提到理論上三字,是因?yàn)槿绻木奂饕€是盲目地建在ID這個(gè)主鍵上時(shí),您的查詢速度是沒有這么高的,即使您在日期這個(gè)字段上建立的索引(非聚合索引)。下面我們就來(lái)看一下在1000萬(wàn)條數(shù)據(jù)量的情況下各種查詢的速度表現(xiàn)(3個(gè)月內(nèi)的數(shù)據(jù)為25萬(wàn)條):
(1)僅在主鍵上建立聚集索引,并且不劃分時(shí)間段:
Select gid,fariqi,neibuyonghu,title from tgongwen
it知識(shí)庫(kù):聚集索引和非聚集索引(sql server索引結(jié)構(gòu)及其使用),轉(zhuǎn)載需保留來(lái)源!
鄭重聲明:本文版權(quán)歸原作者所有,轉(zhuǎn)載文章僅為傳播更多信息之目的,如作者信息標(biāo)記有誤,請(qǐng)第一時(shí)間聯(lián)系我們修改或刪除,多謝。